非结构化数据,尤其是文本,在各个领域继续迅速增长。特别是,在金融领域,有大量累积的非结构化财务数据,例如公司定期向监管机构提交的文本披露文件,例如证券和交易委员会(SEC)。这些文档通常很长,并且倾向于包含有关公司绩效的宝贵信息。因此,从这些长文本文档中学习预测模型是非常兴趣的,尤其是用于预测数值关键绩效指标(KPI)。尽管在训练有素的语言模型(LMS)中取得了长足的进步,这些模型从大量的文本数据中学习,但他们仍然在有效的长期文档表示方面挣扎。我们的工作满足了这种批判性需求,即如何开发更好的模型来从长文本文档中提取有用的信息,并学习有效的功能,这些功能可以利用软件财务和风险信息来进行文本回归(预测)任务。在本文中,我们提出并实施了一个深度学习框架,该框架将长文档分为大块,并利用预先训练的LMS处理和将块汇总为矢量表示,然后进行自我关注以提取有价值的文档级特征。我们根据美国银行的10-K公共披露报告以及美国公司提交的另一个报告数据集评估了模型。总体而言,我们的框架优于文本建模的强大基线方法以及仅使用数值数据的基线回归模型。我们的工作提供了更好的见解,即如何利用预先训练的域特异性和微调的长输入LMS来表示长文档可以提高文本数据的表示质量,从而有助于改善预测分析。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
The latent space of autoencoders has been improved for clustering image data by jointly learning a t-distributed embedding with a clustering algorithm inspired by the neighborhood embedding concept proposed for data visualization. However, multivariate tabular data pose different challenges in representation learning than image data, where traditional machine learning is often superior to deep tabular data learning. In this paper, we address the challenges of learning tabular data in contrast to image data and present a novel Gaussian Cluster Embedding in Autoencoder Latent Space (G-CEALS) algorithm by replacing t-distributions with multivariate Gaussian clusters. Unlike current methods, the proposed approach independently defines the Gaussian embedding and the target cluster distribution to accommodate any clustering algorithm in representation learning. A trained G-CEALS model extracts a quality embedding for unseen test data. Based on the embedding clustering accuracy, the average rank of the proposed G-CEALS method is 1.4 (0.7), which is superior to all eight baseline clustering and cluster embedding methods on seven tabular data sets. This paper shows one of the first algorithms to jointly learn embedding and clustering to improve multivariate tabular data representation in downstream clustering.
translated by 谷歌翻译
An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-balanced Re-weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority predicate performances. It has not yet correctly analyzed the trade-off between majority and minority predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-balanced Re-weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged by the skewness of biased predicate predictions, the SCR estimates the target predicate weight coefficient and then re-weights more to the biased predicates for better trading-off between the majority predicates and the minority ones. Extensive experiments conducted on the standard Visual Genome dataset and Open Image V4 \& V6 show the performances and generality of the SCR with the traditional SGG models.
translated by 谷歌翻译
In this paper we discuss the theory used in the design of an open source lightmorphic signatures analysis toolkit (LSAT). In addition to providing a core functionality, the software package enables specific optimizations with its modular and customizable design. To promote its usage and inspire future contributions, LSAT is publicly available. By using a self-supervised neural network and augmented machine learning algorithms, LSAT provides an easy-to-use interface with ample documentation. The experiments demonstrate that LSAT improves the otherwise tedious and error-prone tasks of translating lightmorphic associated data into usable spectrograms, enhanced with parameter tuning and performance analysis. With the provided mathematical functions, LSAT validates the nonlinearity encountered in the data conversion process while ensuring suitability of the forecasting algorithms.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Deep learning methods in the literature are invariably benchmarked on image data sets and then assumed to work on all data problems. Unfortunately, architectures designed for image learning are often not ready or optimal for non-image data without considering data-specific learning requirements. In this paper, we take a data-centric view to argue that deep image embedding clustering methods are not equally effective on heterogeneous tabular data sets. This paper performs one of the first studies on deep embedding clustering of seven tabular data sets using six state-of-the-art baseline methods proposed for image data sets. Our results reveal that the traditional clustering of tabular data ranks second out of eight methods and is superior to most deep embedding clustering baselines. Our observation is in line with the recent literature that traditional machine learning of tabular data is still a competitive approach against deep learning. Although surprising to many deep learning researchers, traditional clustering methods can be competitive baselines for tabular data, and outperforming these baselines remains a challenge for deep embedding clustering. Therefore, deep learning methods for image learning may not be fair or suitable baselines for tabular data without considering data-specific contrasts and learning requirements.
translated by 谷歌翻译
The future of population-based breast cancer screening is likely personalized strategies based on clinically relevant risk models. Mammography-based risk models should remain robust to domain shifts caused by different populations and mammographic devices. Modern risk models do not ensure adaptation across vendor-domains and are often conflated to unintentionally rely on both precursors of cancer and systemic/global mammographic information associated with short- and long-term risk, respectively, which might limit performance. We developed a robust, cross-vendor model for long-term risk assessment. An augmentation-based domain adaption technique, based on flavorization of mammographic views, ensured generalization to an unseen vendor-domain. We trained on samples without diagnosed/potential malignant findings to learn systemic/global breast tissue features, called mammographic texture, indicative of future breast cancer. However, training so may cause erratic convergence. By excluding noise-inducing samples and designing a case-control dataset, a robust ensemble texture model was trained. This model was validated in two independent datasets. In 66,607 Danish women with flavorized Siemens views, the AUC was 0.71 and 0.65 for prediction of interval cancers within two years (ICs) and from two years after screening (LTCs), respectively. In a combination with established risk factors, the model's AUC increased to 0.68 for LTCs. In 25,706 Dutch women with Hologic-processed views, the AUCs were not different from the AUCs in Danish women with flavorized views. The results suggested that the model robustly estimated long-term risk while adapting to an unseen processed vendor-domain. The model identified 8.1% of Danish women accounting for 20.9% of ICs and 14.2% of LTCs.
translated by 谷歌翻译